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We show that time-delayed feedback methods, which have successfully been used to control unstable
periodic orbits, provide a tool to stabilize unstable steady states. We present an analytical investigation of the
feedback scheme using the Lambert function and discuss effects of both a low-pass filter included in the
control loop and nonzero latency times associated with the generation and injection of the feedback signal.
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I. INTRODUCTION

Starting with the work of Ott, Grebogi, and Yorke �1� a
variety of methods for controlling unstable and chaotic sys-
tems have been developed in the last 15 years and applied to
various real systems in physics, chemistry, biology, and
medicine �2–4�. Pyragas �5� introduced a time-delayed feed-
back scheme that stabilizes unstable periodic orbits �UPOs�
embedded in a chaotic attractor by constructing a control
force from the difference of the current state to the state one
period in the past. This method is known as time-delay au-
tosynchronization �TDAS� and was improved by Socolar et
al. �6� by considering multiple delays in form of an infinite
series �extended TDAS or ETDAS� or an average of N past
iterates �N time delay autosynchronization or NTDAS� �7� or
coupling matrices �generalized ETDAS or GETDAS� �8�. In
parallel to the control of UPOs, the stabilization of unstable
steady states �USSs� became a field of increasing interest.

One of the methods to control an USS introduced by
Bielawski et al. uses the derivative of the current state as
source of a control force �9�. It can be shown, however, that
this derivative control is sensitive to high frequency oscilla-
tions �10� and thus not robust in the presence of noise. An-
other control scheme was given by calculating the difference
of the current state to a low-pass filtered version �11�.

Although the effects of time-delayed feedback schemes
on the stability of periodic orbits are understood to a large
extent �12–16�, much less is known in the case of a fixed
point. There are some results discussing the application of
the ETDAS control method �17� and numerical simulations
of Chua’s circuit �18�, but a detailed theoretical investigation
is still missing.

The purpose of this paper is the analytical and numerical
study of the TDAS method, which was originally invented to
control unstable periodic orbits �5�, in application to unstable
fixed points, including latency and filtering effects. The pa-
per is organized as follows. In Sec. II we will introduce the
system’s equations and the control force. In Sec. III we will
investigate the domain of control in dependence on time de-
lay and feedback gain and present analytical solutions of the
characteristic equation using the Lambert function. Further,
we will consider the effects of nonzero latency times and

additional low-pass filtering in Secs. IV and V, respectively.

II. CONTROL BY TIME-DELAYED FEEDBACK

We consider a general dynamic system given by a vector
field f:

ẋ = f�x� �1�

with an unstable fixed point x* given by f�x*�=0. The stabil-
ity of this fixed point is obtained by linearizing the vector
field around x*. Without loss of generality, let us assume
x*=0. In the following we will consider the generic case of
an unstable focus for which the linearized equations in center
manifold coordinates x ,y can be written as

ẋ = �x + �y , �2�

ẏ = − �x + �y ,

where � and � are positive real numbers. They may be
viewed as parameters governing the distance from the insta-
bility threshold, e.g., a Hopf bifurcation of system �1�, and
the intrinsic eigenfrequency, respectively. For notational con-
venience, Eq. �2� can be rewritten as

ẋ�t� = Ax�t� . �3�

The eigenvalues �0 of the matrix A are given by �0
=�± i�, so that for ��0 and ��0 the fixed point is indeed
an unstable focus. A vanishing imaginary part, i.e., �=0,
would correspond—in the case of a UPO—to an orbit with-
out torsion for which TDAS fails �12�. We note that the same
holds for USSs and therefore we restrict our investigation to
��0.

We shall now apply time-delayed feedback control �5� in
order to stabilize this fixed point:

ẋ�t� = �x�t� + �y�t� − K�x�t� − x�t − ��� , �4�

ẏ�t� = − �x�t� + �y�t� − K�y�t� − y�t − ��� ,

where the feedback gain K and the time delay � are real
numbers. The goal of the control method is to change the
sign of the real part of the eigenvalue.

Since the control force applied to the ith component of the
system involves only the same component, this control*Electronic address: phoevel@physik.tu-berlin.de
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scheme is called diagonal coupling �19�, which is suitable for
an analytical treatment. Note that the feedback term vanishes
if the USS is stabilized since x*�t−��=x*�t� and y*�t−��
=y*�t� for all t, indicating the noninvasiveness of the TDAS
method.

Figure 1 depicts the dynamics of the controlled unstable
focus ��=0.5 and �=�� in the x−y plane for different values
of the feedback gain K. Panels �a�–�d� correspond to increas-
ing K. The time delay of the TDAS control scheme is chosen
as �=1 in all panels. Panel �a� displays the case of the ab-
sence of control, i.e., K=0, and shows that the system is an
unstable focus exhibiting undamped oscillations on a time
scale T0�2� /�=2. It can be seen from panel �b� that in-
creasing K reduces the instability. The system diverges more
slowly to infinity indicated by the tighter spiral. Further in-
crease of K stops the unstable behavior completely and pro-
duces periodic motion, i.e., a center �see panel �c��. The am-
plitude of the orbit depends on the initial conditions, which
are chosen as x=0.01 and y=0.01. For even larger feedback
gains, the trajectory becomes an inward spiral and thus ap-
proaches the fixed point, i.e., the focus. Hence the TDAS
control scheme is successful.

An exponential ansatz for x�t� and y�t� in Eq. �4�, i.e.,
x�t��exp��t� , y�t��exp��t�, reveals how the control force
modifies the eigenvalues of the system. The characteristic
equation becomes

�� + K�1 − e−��� − ��2 + �2 = 0 �5�

so that the complex eigenvalues � are given in the presence
of a control force by the implicit equation

� ± i� = � + K�1 − e−��� . �6�

Using the Lambert function W, which is defined as the in-
verse function of g�z�=zez for complex z �20–24�, Eq. �6�
can be solved analytically,

�� = W�K�e−��±i���+K�� + �� ± i��� − K� . �7�

Panel �a� of Fig. 2 shows the dependence of the largest
real part of the complex eigenvalues � upon the time delay �
according to Eqs. �6� and �7� for �=0.5 and �=�. The solid
curve corresponds to a feedback gain of K=0.3, the dashed
curve to K=0.25, and the dotted curve to K=0.2. All curves
start at Re���=� for �=0, i.e., when no control is applied to
the system. For increasing time delay, the real part Re���
decreases. It can be seen in the case of K=0.3 that there exist
values of the time delay for which Re��� becomes negative,
and thus the control is successful. The curve for K=0.25
shows the threshold case where Re��� becomes zero for �
=1, but does not change sign. The TDAS control scheme
generates an infinite number of additional eigenmodes. The
corresponding eigenvalues are the solutions of the transcen-
dental Eq. �6�. The real parts of the eigenvalues all originate
from −� for �=0. Some of these lower eigenvalues are dis-
played for K=0.3. The different branches of the eigenvalue
spectrum originate from the multiple-leaf structure of the
complex Lambert function. The real part of each eigenvalue
branch exhibits a typical nonmonotonic dependence upon �
which leads to crossover of different branches resulting in an
oscillatory modulation of the largest real part as a function of
�. Such behavior of the eigenvalue spectrum appears to be
quite general, and has been found for various delayed feed-

FIG. 1. Control of an unstable focus with �=0.5 and �=� in the
configuration space for different values of the feedback gain K.
Panels �a�–�d� correspond to K=0,0.2,0.25, and 0.3, respectively.
The time delay � of the TDAS control scheme is chosen as 1,
corresponding to �=T0 /2=� /�.

FIG. 2. �Color online� �a� Largest real part of the complex ei-
genvalues � vs � for �=0.5 and �=� for different K. Some lower
eigenvalues are also displayed for K=0.3 �green online�. �b� Time
series of the x component of the unstable focus: The solid line �red
online� corresponds to x�t�, the dashed line �green online� to the
delayed x component x�t−�� with �=1. The parameters of the un-
stable focus and the control scheme are as in panel �d� of Fig. 1.

P. HÖVEL AND E. SCHÖLL PHYSICAL REVIEW E 72, 046203 �2005�

046203-2



back coupling schemes, including the Floquet spectrum of
UPOs �19,26� and applications to noise-induced motion
where the fixed point is stable �27�.

The notch at �=1 corresponds to Fig. 1, so that at this
value of � the solid, dashed, and dotted curves correspond to
panels �d�, �c�, and �b� of Fig. 1, respectively. The notches at
larger � become less pronounced leading to less effective
realization of the TDAS control scheme, i.e., a smaller or no
� interval with negative Re���.

In the case of an UPO the optimal time delay is equal to
the period of the orbit to be stabilized. Note that in the case
of an USS, however, the time delay is not so obviously re-
lated to a parameter of the system. We will see in Sec. III
which combinations of the feedback gain K and the time
delay � lead to successful control.

Panel �b� of Fig. 2 displays the time evolution of x�t� and
its time-delayed counterpart x�t−�� in the case of a combi-
nation of K=0.3 and �=1 that leads to successul control as in
panel �d� of Fig. 1. The x component of the control force can
be calculated from the difference of the two curves and sub-
sequent multiplication by K. Since x�t� tends to zero in the
limit of large t �the system reaches the focus located at the
origin�, the control force vanishes if the system is stabilized.
Thus the control scheme is noninvasive. Note that the current
signal �red online� and its delayed counterpart �green online�
are in antiphase. This observation will become important in
Sec. IV.

In the following discussion, it is helpful to consider the
real and imaginary part of Eq. �6� separately in order to gain
some analytic information about the domain of control:

p + K�1 − e−p�cos�q��� = � , �8�

q + Ke−p�sin�q�� = �

with �= p+ iq.

III. SHAPE OF THE DOMAIN OF CONTROL

This section is focused on the construction of the domain
of control in the K−� plane. The calculation can be done
analytically for special points by using, for instance, that p
=0 at the threshold of control. Furthermore, we will present
an expansion around the minimal value of K that reveals
further details of the shape of the domain of control.

At the threshold of control the sign of the real part p of
the exponent � changes. Therefore setting p to zero in the
real and imaginary parts, respectively, of Eq. �8� yields

� = K�1 − cos�q��� �9�

and

� = q + K sin�q�� . �10�

Since the cosine is bounded between −1 and 1, the fol-
lowing inequality follows from Eq. �9�:

�

2
� K . �11�

Thus a minimal value of K , Kmin=� /2, for which the control
starts, can be inferred �25�. It corresponds to q�= �2n+1��
for n=0, 1, 2,… .

In order to express the values of the time delay � that
correspond to the minimal K in terms of the parameters of
the uncontrolled system, it is useful to consider even and odd
multiples of � for q�, i.e., q�=2n� and q�= �2n+1�� for n
=0, 1, 2,… . In both cases, the imaginary part of Eq. �6�
leads to q=�. Hence, in the latter case, the time delay � for
Kmin=� /2 becomes

� =
�

�
�2n + 1� . �12�

The last expression can be rewritten using the uncontrolled
eigenperiod T0,

� = T0
2n + 1

2
, �13�

where T0 is defined by

T0 =
2�

�
. �14�

This discussion has shown that K=� /2 and �=T0�2n+1� /2
with n=0, 1, 2,… correspond to points of successful control
in the K−� plane with minimal feedback gain.

For even multiples, i.e., q�=2n� for n=0, 1, 2,…, no
control is possible for finite values of K, since

�K − �

K
= cos�q���

q�=2n�

�15�

⇔1 −
�

K
= 1, �16�

which cannot be satisfied for ��0 and finite K. Furthermore,
Eq. �10� yields that for time delays, which are integer mul-
tiples of the eigenperiod, i.e., �=T0n=2�n /� with n=0, 1,
2,…, the control scheme fails for any feedback gain. Note
that this failure appears to be related to the case of torsion-
free UPOs, where it has been shown that ��0 is a necessary
condition for control �12�.

Another result that can be derived from Eq. �6� is a shift
of q for increasing K. For this, taking the square of the real
and imaginary part of Eq. �6� and using trigonometrical iden-
tities yields

q = � 	 ��2K − ��� . �17�

Inserting Eq. �17� into the real part of Eq. �6� leads to an
explicit expression for the dependence of time delay � on the
feedback gain K at the threshold of stability, i.e., the bound-
ary of the control domain p=0,

K − �

K
= cos�q�� �18�
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⇔��K� =

arccos	K − �

K



� 	 ��2K − ���
. �19�

In order to visualize the shape of the domain of control we
will investigate how small deviations 
�0 from Kmin, i.e,
K=� /2+
, influence the corresponding values of the time
delay �. For this, let ��0 be small and �= �� /���2n
+1�±� a small deviation from � at Kmin. Inserting the ex-
pression for K and � into Eq. �18� yields after some Taylor’s
expansions

− 1 +
4

�

 = − 1 +

1

2
��� 	

�

�
�2n + 1��2��
�2

�20�

⇔� = �±
2�2

���
+

�2�

�2 �2n + 1�����
 . �21�

This equation describes the shape of the domain of control at
the threshold of stabilization, i.e., p=0, near the minimum K
value at �=T0�2n+1� /2 in the K−� control plane. Small de-
viations from � at Kmin are influenced by the square root of
small deviations from the minimum feedback gain.

Figure 3 displays the largest real part of the eigenvalues �
in dependence on both the feedback gain K and the time
delay � for �=� and two different values of �, and summa-
rizes the results of this section. The values of � are calcu-
lated using the analytic solution �7� of Eq. �6�. The two-
dimensional projections at the bottom of each plot extract
combinations of K and � with negative p, i.e., successful
control of the system. In the absence of a control force, i.e.,
K=0, the real part of � starts at �. Increasing the feedback

gain decreases Re���. For K=Kmin=� /2, the real part of the
eigenvalue reaches 0 for certain time delays, i.e., �=T0�2n
+1� /2 with n=0, 1, 2,…, and then changes sign. Thus the
system is stabilized. For values of the feedback gain slighty
above the minimum value Kmin, the domain of control shows
a square root shape. It can be seen that for time delays of
�=T0n the largest real part of the eigenvalues remains posi-
tive for any feedback gain. For a smaller value of � �Fig.
3�b��, i.e., closer to the instability threshold of the fixed
point, the domains of control become larger.

An example of the combination of minimal feedback gain
Kmin=� /2 and corresponding time delay �=T0�2n+1� /2 , n
=0, 1, 2,… is shown in panel �c� of Fig. 1, where K=� /2
=0.25 and �=T0 /2=� /�=1. It describes the control thresh-
old case between stable and unstable fixed point.

IV. LATENCY TIME EFFECTS

In this section we will consider nonzero latency times,
which can be associated with the generation and injection of
the feedback signal �28�. It has been shown experimentally
�29� in the case of an UPO that latency can have important
effects on the controllability of the system and might limit
the success of the time-delayed feedback method. A theoret-
ical explanation can be found in Refs. �30,31�. Here we will
discuss how latency times change the domain of control in
the case of an USS.

The latency time � can be included as an additional time
delay in the control force of Eq. �4�, which then becomes

F�t − �� = − K	x�t − �� − x�t − � − ��
y�t − �� − y�t − � − ��


 , �22�

leading to a characteristic equation similar to Eq. �6� but with
an additional exponential factor

� ± i� = � + Ke−���1 − e−��� �23�

or, separating into real and imaginary parts,

p + K�e−p�cos�q�� − e−p��+��cos„q�� + ��…� = � ,

q − K�e−p�sin�q�� − e−p��+��sin„q�� + ��…� = � ,

where p and q denote the real and imaginary part of �,
respectively.

Figure 4 displays the dependence of the largest real part
of the complex eigenvalues � on the time delay � according
to Eq. �23� for �=0.5 and �=�, and different values of the
latency time �. The values of the eigenvalues are calculated
by solving Eq. �23� numerically. The solid, dashed, dotted,
and dash-dotted curves correspond to �=0, 0.1, 0.2, and 0.3,
respectively. The case with zero latency time is also dis-
played; it corresponds to the solid curve in Fig. 2�a�.

It can be seen that increasing latency time shifts the mini-
mum of p to smaller values of � and reduces the intervals of
�, for which p is negative, i.e., for which the control is suc-
cessful. The dash-dotted curve ��=0.3� shows a case where
no control is possible since the largest real part of the com-
plex eigenvalues remains positive for all time delays �.

Solving Eq. �23� analytically by using the Lambert
function, as for Eq. �6�, is not possible in the case of non-

FIG. 3. �Color online� Domain of control in the K-� plane and
largest real part of the complex eigenvalues � as a function of K
and � according to Eq. �7�. The two-dimensional projection at the
bottom shows combinations of � and K, for which Re��� is nega-
tive and thus the control successful �panel �a�: �=0.5 and �=�;
panel �b�: �=0.1 and �=��.
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zero latency times due to the additional exponential term
exp�−���. In order to understand the effects of nonzero la-
tency times on the value of the minimal feedback gain, we
evaluate the real part of Eq. �23� at the threshold of control,
i.e., p=0. It was shown in Sec. III that K becomes minimal if
q�=��2n+1� for n=0, 1, 2,… �see Eqs. �9� and �11��. This
value of q� yields for nonzero latency times

Kmin��� =
�

2 cos���2n + 1�
�

�
� 


�

2
. �24�

This shows that nonzero latency times shift the minimal
feedback gain Kmin, for which the control scheme is success-
ful, to larger values.

The effects of the cosine function in Eq. �24� can be un-
derstood by considering Fig. 2�b� and Fig. 5, which shows
the dependence of the minimal feedback gain Kmin on the
latency time for �=0.5. Increasing latency time increases the
value of Kmin. If � becomes larger than half the time delay �,
Kmin changes sign and control is possible only for negative K
with K�Kmin and suitably chosen �. Note that in Fig. 2 the

difference x�t�−x�t−�� has to be positive for successful con-
trol. For 0.5����1.5� both x�t−�� and x�t−�−�� becomes
closer to zero. Therefore in order to achieve control, the
feedback gain becomes larger. In the limit � /�→1/2 the
difference x�t−��−x�t−�−�� vanishes and thus the minimal
feedback gain diverges. For even larger values of � the
above-mentioned difference changes its sign forcing Kmin to
do the same. Otherwise the control scheme would generate a
force that pulls the system away from the target fixed point.

Figure 6 depicts the domain of control for latency times of
�=0.1 �panels �a� and �c�� and �=0.3 �panels �b� and �d��.
The largest real part of the complex eigenvalues � is shown
by greyscale in the domain. It can be seen that increasing
latency times reduce the domain of control. For instance, the
small range at a time delay of �=1.5T0 in �a�, where control
is possible for �=0.1, vanishes for �=0.3 in �b�. Note that
nonzero latency times lead to a loss of the symmetry �around
�= �2n+1� /2T0 for n=1, 2,…� of the domain of control �see
also the case of zero latency as displayed in Fig. 3�.

V. LOW-PASS FILTERING

It has been found that high frequency modulations of the
control signal, due to additional high frequency components
in the signal besides the main frequency, can render the
TDAS control method unstable �32�. As shown in that work,
an additional low-pass filter included in the control loop can
overcome this limitation, and UPOs can be stabilized
�32,33�. On the other hand, in electronic signal processing
the finite response time of the circuit often imposes unavoid-
able low-pass filtering, and its effect upon feedback control
is not clear. In this section we will show that a low-pass filter
changes the characteristic equation �see Eq. �6�� of the fixed
point, and shifts the minimal feedback gain to larger values.
Note that low-pass filtering has been successfully used to
stabilize USSs by generating a control force from the differ-
ence of the current state to its filtered counterpart �11�.

FIG. 4. Largest real part of the eigenvalues � vs � for �=0.5,
�=�, and K=0.3 as given by Eq. �23�. The solid, dashed, dotted,
and dash-dotted curves correspond to a latency time of �=0, 0.1,
0.2, and 0.3, respectively.

FIG. 5. Minimal feedback gain K vs relative latency � /� for �
=0.5 and �=� according to Eq. �24�. The shaded areas show the
domain of control for suitably chosen �.

FIG. 6. �Color online� Domain of control in the K-� plane for
different latency times �panels �a� and �c�: �=0.1; panels �b� and
�d�: �=0.3�. The shaded areas indicate combinations of � and K, for
which the largest real part of the complex eigenvalues � is negative
and thus control is successful. The value of Re��� is indicated by
the greyscale �color online�. The parameters of the unstable focus
are chosen as �=� in all panels and �=0.5 in �a� and �b� and �
=0.1 in �c� and �d�.
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The TDAS control force with an additional low-pass filter
can be written as

F�t� = − K	 x̄�t� − x̄�t − ��
ȳ�t� − ȳ�t − ��


 , �25�

where x̄ and ȳ denote the filtered versions of x and y defined
by

x̄�t� = �

−�

t

x�t��e−��t−t��dt� �26�

with the cutoff frequency �, and analogously for ȳ�t�.
Equivalently, the convolution integrals can be replaced by
two additional differential equations such that the original
two-dimensional system becomes four-dimensional,

ẋ�t� = �x�t� + �y�t� − K�x̄�t� − x̄�t − ��� , �27�

ẏ�t� = − �x�t� + �y�t� − K�ȳ�t� − ȳ�t − ��� ,

ẋ̄�t� = − �x̄�t� + �x�t� ,

ẏ̄�t� = − �ȳ�t� + �y�t� .

This system of differential equations yields a characteristic
equation of the form

±i�� + ��� = �K�1 − e−��� − �� + ���� − �� �28�

or, equivalently, using �= p+ iq,

��� − p� = �K�1 − e−p�cos�q��� − q�q − �� , �29�

��� − q� = �Ke−p�sin�q�� − �q − p� .

Note that in the limit of large cutoff frequencies, i.e., �
→�, Eqs. �28� and �29� reduce to the characteristic equa-
tions �6� and �8� of Sec. II, respectively.

For further investigation of Eq. �28� we shall use the sepa-
ration into real and imaginary parts �29�. Following the dis-
cussion of Sec. III by considering even and odd multiples of
� as special values for q�, we obtain from the imaginary part
of Eq. �28� in the case q�= �2n+1��

� =
2n + 1

�
�	1 −

�

�

 �30�

with n=0,1,2,…. Inserting this into the real part of Eq. �28�
gives an expression for the minimum value of the feedback
gain, for which the control method becomes successful for
appropriately chosen �,

Kmin��� =
�

2
+

�2

2

�

�� − ��2 . �31�

The dependence of the minimal feedback gain Kmin on the
cutoff frequency � is depicted in Fig. 7 for �=0.5 and �
=�. For large cutoff frequencies the minimum value tends to
the result of Sec. III �see Eq. �11��. Note that for finite � the
minimal feedback gain is shifted to larger values compared
to the case of the original TDAS control scheme.

Figure 8 shows the largest real part of the eigenvalues �

FIG. 7. Minimal feedback gain K vs cutoff frequency � for �
=0.5 and �=� according to Eq. �31�. The shaded area shows the
domain of control. FIG. 8. �Color online� Largest real part of the complex eigen-

values � vs � for �=0.5, �=�, and K=0.3 as given by Eq. �28�.
The solid, dashed, dotted, and dash-dotted curves correspond to a
cutoff frequency of �=1000, 10, 7, and 4, respectively.

FIG. 9. �Color online� Domain of control in the K-� plane for
different cutoff frequencies �panels �a� and �c�: �=1000; panels �b�
and �d�: �=7�. The shaded areas indicate combinations of � and K,
for which the largest real part of the complex eigenvalues � is
negative and thus control is successful. The value of Re��� is indi-
cated by the greyscale �color online�. The parameters of the un-
stable focus are chosen as �=� in all panels and �=0.5 in �a� and
�b� and �=0.1 in �c� and �d�.
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in dependence on the time delay � for fixed feedback gain
K=0.3 and various cutoff frequencies �=1000, 10, 7, and 4.
For a large cutoff frequency, i.e., �=1000, the curve is simi-
lar to the case without low-pass filter �see Fig. 2�a�� indicat-
ing that the filter has only little effect. For smaller �, how-
ever, filtering the control signal reduces the range of the time
delay �, for which Re��� becomes negative, eventually lead-
ing to a complete failure of stabilization. Note that the
notches are shifted to lower values of � for decreasing �.
This effect can also be understood by Eq. �30� due to the
additional factor �1−� /���1. The corresponding domains
of control in the K−� plane are shifted to smaller values of �
and distorted asymmetrically �Fig. 9�.

VI. CONCLUSION

We have discussed the effects of time-delayed feedback
control upon the stability of steady states. We have computed
the domain of stabilization of an unstable focus in the plane
parametrized by feedback gain and time delay. Using the
complex multivalued Lambert function, we have derived
analytically the main features of the stability domain by in-

vestigating the characteristic equation of the fixed point. Be-
low a minimum value of the feedback gain no control is
possible. In the vicinity of this minimum value, the shape of
the domain of control shows a square root dependence on the
feedback gain. We find that no control is possible for time
delays that are multiples of the uncontrolled eigenperiod of
the system. Taking nonzero control loop latencies into ac-
count, we have shown that increasing latency times increase
the minimum value of the feedback gain Kmin and reduce the
domain of control substantially. Similarily, an additional
low-pass filter in the control loop causes a shift of Kmin, as
well. This suggests that filtering with a cutoff frequency �
has a similar effect as a latency delay time �−1. In fact,
expanding Eq. �24� for small latency � in lowest order yields
the same minimal feedback gain Kmin as for low-pass filter-
ing �31�, if Eq. �30� is observed.

ACKNOWLEDGMENT

This work was supported by Deutsche Forschungsge-
meinschaft in the framework of Sfb 555. We are indebted to
Andreas Amann and Wolfram Just for stimulating discus-
sions.

�1� E. Ott, C. Grebogi and J. A. Yorke, Phys. Rev. Lett. 64, 1196
�1990�.

�2� H. G. Schuster, Handbook of Chaos Control �Wiley-VCH,
Weinheim, 1999�.

�3� S. Boccaletti, C. Grebogi, Y. C. Lai, H. Mancini, and D. Maza,
Phys. Rep. 329, 103 �2000�.

�4� D. Gauthier, G. M. Hall, R. A. Olivier, E. G. Dixon-Tulloch, P.
D. Wolf, and S. Bahar, Chaos 12, 952 �2003�.

�5� K. Pyragas, Phys. Lett. A 170, 421 �1992�.
�6� J. E. S. Socolar, D. W. Sukow, and D. J. Gauthier, Phys. Rev.

E 50, 3245 �1994�.
�7� J. E. S. Socolar and D. J. Gauthier, Phys. Rev. E 57, 6589

�1998�.
�8� I. Harrington and J. E. S. Socolar, Phys. Rev. E 69, 056207

�2004�.
�9� S. Bielawski, M. Bouazaoui, D. Derozier, and P. Glorieux,

Phys. Rev. A 47, 3276 �1993�.
�10� A. Chang, J. C. Bienfang, G. M. Hall, J. R. Gardner, and D. J.

Gauthier, Chaos 8, 782 �1998�.
�11� K. Pyragas, V. Pyragas, I. Z. Kiss, and J. L. Hudson, Phys.

Rev. E 70, 026215 �2004�.
�12� W. Just, T. Bernard, M. Ostheimer, E. Reibold, and H. Benner,

Phys. Rev. Lett. 78, 203 �1997�.
�13� W. Just, E. Reibold, H. Benner, K. Kacperski, P. Fronczak, and

J. Holyst, Phys. Lett. A 254, 158 �1999�.
�14� K. Pyragas, Phys. Rev. E 66, 026207 �2002�.
�15� C. von Loewenich, H. Benner, and W. Just, Phys. Rev. Lett.

93, 174101 �2004�.
�16� A. G. Balanov, N. B. Janson, and E. Schöll, Phys. Rev. E 71,

016222 �2005�.
�17� K. Pyragas, Phys. Lett. A 206, 323 �1995�.

�18� A. Ahlborn and U. Parlitz, Phys. Rev. Lett. 93, 264101 �2004�.
�19� O. Beck, A. Amann, E. Schöll, J. E. S. Socolar, and W. Just,

Phys. Rev. E 66, 016213 �2002�.
�20� E. M. Wright, Proc. R. Soc. Edinburgh, Sect. A: Math. Phys.

Sci. 62, 387 �1949�.
�21� E. M. Wright, J. Reine Angew. Math. 194, 66 �1955�.
�22� R. Bellmann and K. L. Cooke, Differential-Difference Equa-

tions �Academic Press, New York, 1963�.
�23� J. K. Hale, Functional Differential Equations, Applied Math-

ematical Sciences Vol. 03 �Springer, New York, 1971�.
�24� F. M. Asl and A. G. Ulsoy, ASME J. Dyn. Syst., Meas.,

Control 125, 215 �2003�.
�25� It should be noted that a similar characteristic equation as Eq.

�6� holds for the Floquet exponents of a UPO, where the lower
bound, Kmin=� /2, of the feedback gain has been shown to
correspond to the flip threshold of control �12,13�.

�26� W. Just, S. Popovich, A. Amann, N. Baba, and E. Schöll, Phys.
Rev. E 67, 026222 �2003�.

�27� N. B. Janson, A. G. Balanov, and E. Schöll, Phys. Rev. Lett.
93, 010601 �2004�.

�28� J. N. Blakely, L. Illing, and D. J. Gauthier, Phys. Rev. Lett. 92,
193901 �2004�.

�29� D. W. Sukow, M. E. Bleich, D. J. Gauthier, and J. E. S. Soco-
lar, Chaos 7, 560 �1997�.

�30� W. Just, D. Reckwerth, E. Reibold, and H. Benner, Phys. Rev.
E 59, 2826 �1999�.

�31� P. Hövel and J. E. S. Socolar, Phys. Rev. E 68, 036206 �2003�.
�32� J. Schlesner, A. Amann, N. B. Janson, W. Just, and E. Schöll,

Phys. Rev. E 68, 066208 �2003�.
�33� J. Schlesner, A. Amann, N. B. Janson, W. Just, and E. Schöll,

Semicond. Sci. Technol. 19, S34 �2004�.

CONTROL OF UNSTABLE STEADY STATES BY TIME-… PHYSICAL REVIEW E 72, 046203 �2005�

046203-7


